首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   13篇
  国内免费   6篇
测绘学   1篇
大气科学   21篇
地球物理   69篇
地质学   71篇
海洋学   87篇
天文学   30篇
综合类   2篇
自然地理   8篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   6篇
  2017年   9篇
  2016年   13篇
  2015年   4篇
  2014年   11篇
  2013年   10篇
  2012年   2篇
  2011年   9篇
  2010年   15篇
  2009年   5篇
  2008年   11篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   8篇
  2003年   10篇
  2002年   15篇
  2001年   12篇
  2000年   15篇
  1999年   7篇
  1998年   6篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   2篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有289条查询结果,搜索用时 466 毫秒
81.
Aeromagnetic surveys in the seas around Japan were carried out in 1979 to 1980 by a YS-11 aircraft of the Maritime Safety Agency of Japan using a new type of airborne magnetometer system. The new type of airborne magnetometer system consists of a ring-core type three-component fluxgate magnetometer, an inertial sensing system, a fish-eye camera to measure the true north, an 8-bit microcomputer and a proton magnetometer. The VLF/OMEGA system is used to fix the position of the aircraft. Tracks extended to about 600 nautical miles off the coast of the Japanese islands in the Sea of Japan and the North-West Pacific Ocean. Average spacing between tracks was about 80 miles. The flights were carried out at an altitude of 9500 feet. From the survey results, magnetic charts of the seven geomagnetic elements for 1980 over the sea around Japan were compiled by the method of least squares using a polynomial. Also, the contour charts of secular variation in 1980 were compiled.  相似文献   
82.
Garnet–biotite and garnet–cordierite geothermometers have been consistently calibrated, using the results of Fe2+–Mg cation exchange experiments and utilizing recently evaluated nonideal mixing properties of garnet. Nonideal mixing parameters of biotite (including Fe, Mg, AlVI, and Ti) and of cordierite (involving Fe and Mg) are evaluated in terms of iterative multiple least-square regressions of the experimental results. Assuming the presence of ferric Fe in biotite in relation to the coexisting Fe-oxide phases (Case A), and assuming the absence of ferric Fe in biotite (Case B), two formulae of garnet–biotite thermometer have been derived. The garnet–cordierite geothermometer was constructed using Margules parameters of garnet adopted in the garnet–biotite geothermometers. The newly calibrated garnet–biotite and garnet–cordierite thermometers clearly show improved conformity in the calculated temperatures. The thermometers give temperatures that are consistent with each other using natural garnet–biotite–cordierite assemblages within ±50 °C. The effects of ferric Fe in biotite on garnet–biotite thermometry have been evaluated comparing the two calibrations of the thermometer. The effects are significant; it is clarified that taking ferric Fe content in biotite into account leads to less dispersion of thermometric results.  相似文献   
83.
A 3729-m-deep geothermal research well, WD-1a, provides us with a unique opportunity to study initial petrographic features of a high-temperature granite just after solidification of magma. The well succeeded in collecting three spot-cores of the Kakkonda Granite that is a pluton emplaced at a shallow depth and regarded as a heat source of the active Kakkonda geothermal system. The core samples were collected at the present formation temperatures of 370, 410 and over 500°C. These samples are granodiorite to tonalite consisting mainly of plagioclase, quartz, hornblende, biotite and K-feldspar. A sample collected at a formation temperature of over 500°C possesses the following remarkable petrographic features compared to the other two samples. Interstitial spaces are not completely sealed. K-feldspar exhibits no perthite by the exsolution of albite lamella. Quartz includes glassy melt inclusions without devitrification. Hornblende is less intensively altered to actinolite, and biotite is not altered. This study directly confirmed that perthite in K-feldspar is a recrystallization texture formed at 410–500°C based on a comparison of the in situ temperatures of the samples. Chemical compositions of minerals were analyzed to compare temperatures determined from geothermometers in several publications to the in situ temperatures of the samples.  相似文献   
84.
We use modern and novel techniques to study the problems associated with detection and analysis of multitudinous seismic events, which form the background for isolated great earthquakes. This new approach involves multivariate analysis of low and large magnitude events recorded in space over a couple of centuries in time. We propose here the deployment of the clustering scheme both for extracting small local structures and large-scale trends in synthetic data obtained from four numerically simulated models with: uniform properties (U), a Parkfield-type asperity (A), fractal brittle properties (F), and multi-size-heterogeneity fault zone (M). The mutual nearest neighbor (mnn) clustering scheme allows for extraction of multi-resolutional seismic anomalies in both the spatio-temporal and multi-dimensional feature space. We demonstrate that the large earthquakes are correlated with a certain pathway of smaller events. Visualization of the anomalies by using a recently introduced visualization package Amira reveals clearly the spatio-temporal relationships between clusters of small, medium and large earthquakes, indicating significant stress relaxation across the entire fault region. We demonstrate that this mnn scheme can extract distinct clusters of the smallest events, which precede and follow a singularly large magnitude earthquake. These clusters form larger spatio-temporal structures comprising a series of large earthquakes. The link between the large and medium magnitude events is not so clearly understood. Short-ranged correlations are dominated by strong spatio-temporal anomalies, thus reflecting the global seismic properties of the entire fault zone.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   
85.
Slake durability of rocks is an important property of rock-mass and rock-materials in geotechnical practice. The slake durability of rocks is closely related to their mineralogical composition. In this paper, mineralogical examinations and slake durability tests for argillaceous clastic rocks, especially pyroclastic rocks, sandstones and mudstones of Neogene Tertiary age from Japan, were performed in order to assess the slake durability and rock alteration process of these rocks as well as to understand the relationship between mineralogy and durability.The mineral composition and textural features of the rocks were studied by means of optical microscopy (OM), X-ray diffractometry (XRD), electron microprobe analysis (EPMA), and scanning electron microscopy (SEM). In addition, the slake durability test was carried out by using the standard testing method of ISRM [Int. J. Rock Mech. Min. Sci. 16 (1979) 148] in distilled water and in the aqueous solutions with dissolved electrolytes of NaCl and CaCl2.The pyroclastic rocks and tuffaceous sandstone, rich in di-octahedral and tri-octahedral Fe smectite, respectively, show distinctively different slaking behaviors. The pyroclastic rocks show relatively high slaking (Id2=55.5% and Id10=10.5%) than the tuffaceous sandstone (Id2=94.1% and Id10=87.8%, refer to text for Id2 and Id10). This difference in the slake durability observed in these rocks is due to the microscopic occurrences of smectite present in the interspaces between the particles (pyroclastic rocks) and zeolite cementing the interspaces (tuffaceous sandstone) as alteration minerals. In addition, the durability results of tuffaceous sandstone show that the slake durability decreases as the degree of weathering increases (weathered material Id2=88.7% and Id10=65.3%). Furthermore, two mudstones of Miocene and Pliocene ages, having different clay mineral compositions (smectite vs. illite+chlorite), show the lowest and the highest slake durability among the tested clastic rocks. Hard mudstone shows the highest (Id2=98.1% and Id10=95.5%) while the soft mudstone shows the lowest (Id2=33.9% and Id6=0.4%.) slake durability. Thus, the slake durability of pyroclastic and sedimentary rocks is greatly affected by their mineral composition and texture, and is closely related to their alteration history. Slake durability is also affected by the kind of dissolved electrolyte and its concentration in the aqueous solution, providing some useful information for geotechnical practice.  相似文献   
86.
87.
We have reconstructed the history of mid-late Holocene paleohydrological changes in the Chinese Loess Plateau using n-alkane data from a sediment core in Tianchi Lake. We used Paq (the proportion of aquatic macrophytes to the total plant community) to reflect changes in lake water level, with a higher abundance of submerged macrophytes indicating a lower water level and vice versa. The Paq-based hydrological reconstruction agrees with various other lines of evidence, including ACL (average chain length), CPI (carbon preference index), C/N ratio and the n-alkane molecular distribution of the sediments in Tianchi Lake. The results reveal that the lake water level was relatively high during 5.7–3.2 ka BP, and decreased gradually thereafter. Our paleohydrological reconstruction is consistent with existing paleoclimate reconstructions from the Loess Plateau, which suggest a humid mid-Holocene, but is asynchronous with paleoclimatic records from central China which indicate an arid mid-Holocene. Overall, our results confirm that the intensity of the rainfall delivered by the EASM (East Asian summer monsoon) is an important factor in affecting paleohydrological changes in the region and can be considered as further evidence for the development of a spatially asynchronous “northern China drought and southern China flood” precipitation pattern during the Holocene.  相似文献   
88.
The chemical composition of primary cosmic rays with energies from 1015 to 1016.5 eV, so called “knee” region, is examined. We have observed the time structures of air Čerenkov light associated with air showers at Mt. Chacaltaya, Bolivia, since 1995. The distribution of a parameter that characterizes the observed time structures is compared with that calculated with a Monte Carlo technique for various chemical compositions. Then the energy dependence of the average logarithmic mass numbers ln A of the primary cosmic rays is determined. The present result at 1015.3 eV is almost consistent with the result of JACEE (A12) and shows gradual increase in ln A as a function of the primary energy (A24 at 1016 eV). Form the comparison of the observational results with several theoretical models, we conclude that the supernova explosion of massive stars is a plausible candidate for the origin of cosmic rays around the “knee” region.  相似文献   
89.
The Gorny Altai region in southern Siberia is one of the key areas in reconstructing the tectonic evolution of the western segment of the Central Asian Orogenic Belt (CAOB). This region features various orogenic elements of Late Neoproterozoic–Early Paleozoic age, such as an accretionary complex (AC), high-P/T metamorphic (HP) rocks, and ophiolite (OP), all formed by ancient subduction–accretion processes. This study investigated the detailed geology of the Upper Neoproterozoic to Lower Paleozoic rocks in a traverse between Gorno-Altaisk city and Lake Teletskoy in the northern part of the region, and in the Kurai to Chagan-Uzun area in the southern part. The tectonic units of the studied areas consist of (1) the Ediacaran (=Vendian)–Early Cambrian AC, (2) ca. 630 Ma HP complex, (3) the Ediacaran–Early Cambrian OP complex, (4) the Cryogenian–Cambrian island arc complex, and (5) the Middle Paleozoic fore-arc sedimentary rocks. The AC consists mostly of paleo-atoll limestone and underlying oceanic island basalt with minor amount of chert and serpentinite. The basaltic lavas show petrochemistry similar to modern oceanic plateau basalt. The 630 Ma HP complex records a maximum peak metamorphism at 660 °C and 2.0 GPa that corresponds to 60 km-deep burial in a subduction zone, and exhumation at ca. 570 Ma. The Cryogenian island arc complex includes boninitic rocks that suggest an incipient stage of arc development. The Upper Neoproterozoic–Lower Paleozoic complexes in the Gorno-Altaisk city to Lake Teletskoy and the Kurai to Chagan-Uzun areas are totally involved in a subhorizontal piled-nappe structure, and overprinted by Late Paleozoic strike-slip faulting. The HP complex occurs as a nappe tectonically sandwiched between the non- to weakly metamorphosed AC and the OP complex. These lithologic assemblages and geologic structure newly documented in the Gorny Altai region are essentially similar to those of the circum-Pacific (Miyashiro-type) orogenic belts, such as the Japan Islands in East Asia and the Cordillera in western North America. The Cryogenian boninite-bearing arc volcanism indicates that the initial stage of arc development occurred in a transient setting from a transform zone to an incipient subduction zone. The less abundant of terrigenous clastics from mature continental crust and thick deep-sea chert in the Ediacaran–Early Cambrian AC may suggest that the southern Gorny Altai region evolved in an intra-oceanic arc-trench setting like the modern Mariana arc, rather than along the continental arc of a major continental margin. Based on geological, petrochemical, and geochronological data, we synthesize the Late Neoproterozoic to Early Paleozoic tectonic history of the Gorny Altai region in the western CAOB.  相似文献   
90.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号